Resonance of human brain under head acceleration.
نویسندگان
چکیده
Although safety standards have reduced fatal head trauma due to single severe head impacts, mild trauma from repeated head exposures may carry risks of long-term chronic changes in the brain's function and structure. To study the physical sensitivities of the brain to mild head impacts, we developed the first dynamic model of the skull-brain based on in vivo MRI data. We showed that the motion of the brain can be described by a rigid-body with constrained kinematics. We further demonstrated that skull-brain dynamics can be approximated by an under-damped system with a low-frequency resonance at around 15 Hz. Furthermore, from our previous field measurements, we found that head motions in a variety of activities, including contact sports, show a primary frequency of less than 20 Hz. This implies that typical head exposures may drive the brain dangerously close to its mechanical resonance and lead to amplified brain-skull relative motions. Our results suggest a possible cause for mild brain trauma, which could occur due to repetitive low-acceleration head oscillations in a variety of recreational and occupational activities.
منابع مشابه
Ziejewski 1 DYNAMIC RESPONSE OF HEAD UNDER VEHICLE CRASH LOADING
In this paper, a three-dimensional (3-D) nonlinear finite element (FE) method is used in association with the Articulated Total Body (ATB) biodynamics method, to study the human brain response under dynamic loading. The FE formulation includes the detailed model of the skull, brain, cerebral-spinal fluid (CSF), dura mater, pia mater, falx and tentorium membranes. The brain is modeled as viscoel...
متن کاملFinite element modeling of the human head under baton impact
Purpose: This research will try to predict damage probability and calculate the main stress resulted from baton impacts by finite element (FE) modeling of the human head considering skull texture, brain and cerebrospinal fluid.Materials and Methods: A three dimensional FE model of the skull-brain complex was constructed for simulating the baton impact. The FE analysis was carried out using ANSY...
متن کاملInfluence of Rotational Acceleration on Intracranial Mechanical Parameters under Accidental Circumstances
The objective of the present paper is to provide new insight not only to an original head trauma database but also to the intra-cranial response of the human head computed with an existing head FE model under accidental circumstances. More precisely, the separate contribution of rotational acceleration and linear acceleration at the time of impact to the intra-cerebral shearing stresses and bra...
متن کاملApplication of Magnetic Resonance Spectroscopy in Neurocognitive Assessment After Head Injury: A Systematic Review
Background: Traumatic brain injury is believed to be a public health disorder with some complications. Post Traumatic Neurocognitive Disorders (PTND) received much attention among these complications because of the high prevalence of mild traumatic brain injuries. On the other hand, advanced neuroimaging is increasingly becoming an exciting modality in the field of traumatic brain injury. Magne...
متن کاملPrincipal Component Analysis of Dynamic Relative Displacement Fields Estimated from MR Images
Non-destructive measurement of acceleration-induced displacement fields within a closed object is a fundamental challenge. Inferences of how the brain deforms following skull impact have thus relied largely on indirect estimates and course-resolution cadaver studies. We developed a magnetic resonance technique to quantitatively identify the modes of displacement of an accelerating soft object r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 12 108 شماره
صفحات -
تاریخ انتشار 2015